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Recent years have witnessed an incredible amount of 

user-generated content through applications such as 

social networks, blogs and multimedia-sharing services.  

The key challenge that research community as well as 

Industry is facing is to design a cost efficient storage 

system to cope with this data explosion.  

A Distributed Storage System formed, by networking 

together a large number of, inexpensive and unreliable, 

storage devices provides one such alternative to store 

such a massive amount of data with high reliability and 

availability. 



Introduction 

What is Distributed Data Storage? 
It’s a computer network in which information is stored in 

more than one node, often in a replicated fashion. 
 

How can we achieve this subject? 
❏ Consistent Hashing 

❏ Hypercubic Networks 

❏ DHT(Distributed Hash Table) & Churn 
 
 



Consistent Hashing 



Consistent Hashing 

•What is Consistent Hashing? 
It’s a special kind of hashing such that when a hash table is 

resized, only K/n keys need to be remapped on average, 

where K is number of keys and n the number of slots 

•How can we realize this hash table? 
Starts off as a sparse ring data structure. 

A SortedMap[K, V] where K is the offset in the ring and V 

the value at that position. 

Every node has N entries in the ring. 

N is commonly referred as the node’s weight and correspond 

to the probability of the node to be selected. 

Every node has a probability P = W/S to be selected, 

where W is its weight and S the Sum of all nodes’ entries. 



Example 

Let’s start with a simple hash ring of 2 nodes, each with a weight 

equals to 2. 

Every node is put in the Map applying a known set of hash functions 

(h1, …, hk) to identify its point around the circle. 
 



Example (cont.) 

Now, to map a key to the corresponding node, we apply the same set 

of hash functions used to map the nodes. 

Every key-point is associated with the first clockwise node-point 

found. (as shown in the picture) 



Example (cont.) 

•Now, adding 2 nodes with the same weight as previous, that’s what 

happens. 

•As we can see, only the «Robert» key has to be remapped. 

•A similar situation takes place in case some node become unavailable 

and all its entries have to be removed 



In Summary 

•Consistent hashing is based on mapping each object to a point on the edge of a 

circle 

•The system maps each available machine to many pseudo-randomly distributed 

points on the edge of the same circle 

•the system finds the location of that object's key; then walks around the circle 

until falling into the first bucket 

•If a bucket becomes unavailable then the points it maps to will be removed; 

Requests now map to the next highest points 

•The portion of the keys associated with each bucket can be altered by altering 

the number of angles (weight of the node) that bucket maps to 

 

Theorem 21.2 (Consistent Hashing). 

In expectation, the Algorithm stores each object kn/m times. 

Proof: While it is possible that some object does not hash closest to a node for 

any of its hash functions, this is highly unlikely: For each node (n) and each hash 

function (k), each object (m) has about the same probability (1/m) to be stored. 

By linearity of expectation, a movie is stored kn/m times, in expectation.  



Hypercubic Networks 



Topology Properties 

● Homogeneous 
○ No dominant node 

○ No single point of failure 

● Non-anonymous 
○ ID ∈ [0,1[ 

○ Hash functions 

● Small node degree 
○ Polylogarithmic in n: O( logk(n) ) 

○ Deal with churn 

● Small network diameter 

○ Polylogarithmic in n 

○ Easy routing 
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Fat Trees 
● Trees: 

○ Easy routing: single path between any pair of nodes 

○ Bottleneck: non-homogeneous (e.g. the root) 

● Fat-trees: 
○ each edge (u,v) has a capacity proportional to the number of 

leaves in the subtree rooted at v 
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Mesh 
● Definition of the (m,d)-mesh: 

○ m, d ∈ ℕ 

○ Graph G = (V, E) with 
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● Examples: 

 

  



Hypercubes 

● Definition: a d-dimensional hypercube is a (2,d)-mesh 

● Properties: 

○ dimension d 

○ 2d nodes 

○ node degree d 

○ network diameter d 

○ routing: fix wrong bit, one at the time (multiple paths) 

● Examples: 
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Torus 
● Definition: a (m,d)-torus is an (m,d)-mesh with additional 

wrap-around edges between nodes (for all i) 

        and  

● Examples: 
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NB: since m-1=1, 

H(d) = M(2,d)  

 = T(2,d) 



Butterfly 
● Definition: the d-dimensional butterfly BF(d) is a graph G=(V, 

E1⋃E2) with 

 

 

● Level i: 

● Wrap-around butterfly:   

● Property: constant node degree 

● Examples: 
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Definition 21.9 Cube-Connected-Cycles 

Remarks: 
•Two possible representations of a CCC can be found in Figure 21.10. 

•The shuffle-exchange is yet another way of transforming the hypercubic interconnection 

structure into a constant degree network. 

 



Definition 21.11 Shuffle-Exchange 



Definition 21.13 DeBruijn 

Remarks: 

•Two examples of a DeBruijn graph can be found in Figure 21.14. 

•There are some data structures which also qualify as hypercubic networks. An 

example of a hypercubic network is the skip list, the balanced binary search tree 

for the lazy programmer. 

 



Skip List 
● An ordinary ordered linked list of objects, augmented with 

additional forward links. 
● Ordinary linked list is level 0, and in addition, every object is 

promoted to level 1 with probability 1/2. 
● As for level 0, all level 1 objects are connected by a linked list. 
● In general, every object on level i is promoted to the next level 

with probability 1/2.  
● A special start-object points to the smallest/first object on 

each level. 
 

 
 
Remarks: 
● Search, insert, and delete can be implemented in O(log n) expected 

time in a skip list. 
● The randomization can easily be discarded, by deterministically 

promoting a constant fraction of objects of level i to level i+1,for all i. 
● There are obvious variants of the skip list, e.g., the skip graph, 

balanced binary tree. 
● More generally, how are degree and diameter of Definition 21.3 

related? See in theorem 
 



Theorem: Every graph of maximum degree d > 2 and size n must 
have a diameter of at least ⌈(log n)/(log(d-1))⌉ -2. 

Proof. Suppose we have a graph G = (V;E) of maximum degree d and 
size n. Start from any node v ∈ V . In a first step at most d other 
nodes can be reached. In two steps at most d  (d-1) additional 
nodes can be reached. Thus, in general, in at most k steps at most 

 
 
 
nodes (including v) can be reached. This has to be at least n to 
ensure that v can reach all other nodes in V within k steps. Hence, 
 
 
 
 
 
Since logd-1((d-2)/d) > -2 for all d > 2, this is true only if k >= 
⌈(log n)/(log(d-1))⌉-2. 



Remarks 
● In other words, constant-degree hypercubic networks feature an 

asymptotically optimal diameter. 
● Other hypercubic graphs manage to have a different trade-offs 

between node degree and diameter.The pancake graph, for instance, 
minimizes the maximum of these with d = k =𝜭(log n/log log n). The 
ID of a node u in the pancake graph of dimension d is an arbitrary 
permutation of the numbers 1,2, . . . ,d. Two nodes u, v are 
connected by an edge if one can get the ID of node v by taking the 
ID of node u, and reversing (flipping) the first i numbers of u's ID. 
For example, in dimension d = 4, nodes u = 2314 and v = 1324 are 
neighbors. 

● There are a few other interesting graph classes which are not 
hypercubic networks, but nevertheless seem to relate to the 
properties of Definition 21.3.Small-world graphs. 

● Expander graphs (an expander graph is a sparse graph which has 
good connectivity properties, that is, from every not too large 
subset of nodes you are connected to an even larger set of nodes) 
are homogeneous, have a low degree and small diameter. However, 
expanders are often not routable. 



DHT & Churn 



Definition - DHT (Distributed Hash Table) 

 A distributed hash table (DHT) is a distributed data 

structure that implements a distributed storage. 

 A typical DHT consists of a search for a key, 

 an insert (key, object) operation 

 And sometimes, a delete (key) operation. 

 

 Notable distributed networks that use DHTs include 

BitTorrent’s distributed tracker. 

the Internet domain name system (DNS) is essentially a 

DHT.  



Emphasized properties in DHT 

•Autonomy and decentralization: the nodes collectively 

form the system without any central coordination. 

•Fault tolerance: the system should be reliable even with 

nodes continuously joining, leaving and failing. 

•Scalability: the system should function efficiently even 

with thousands or millions of nodes. 

 A key technique used to achieve these goals is that any 

one node needs to coordinate with only a few other nodes 

in the system – most commonly, O(log n) of the n 

participants – so that only a limited amount of work needs 

to be done for each change in membership. 



Hypercubes and DHT 

A DHT can be implemented as a hypercubic overlay network with 

nodes having identifiers such that they span the ID space [0,1). 

A hypercube can directly be used for a DHT. Just use a globally 

known set of hash functions hi, mapping movies to bit strings 

with d bits. 

Other hypercubic structures may be a bit more intricate when 

using it as a DHT: The butterfly network, for instance, may 

directly use the d+1 layers for replication, i.e., all the d+1 

nodes are responsible for the same ID. 

Other hypercubic networks, e.g. the pancake graph, might need a 

bit of twisting to find appropriate IDs.  



Bootstrap Problem 

We assume that a joining node knows a node which already 

belongs to the system. This is known as the bootstrap 

problem. 

Typical solutions are: If a node has been connected with 

the DHT previously, just try some of the previous nodes. 

Or the node may ask some authority for a list of IP 

addresses (and ports) of nodes that are regularly part of 

the DHT. 



Analyzation 

When the sketched DHT is analyzed against an adversary that can crash a fraction of 

random nodes: 

We assume that joins and leaves occur in a worst-case manner. We think of an 

adversary that can remove and add a bounded number of nodes (at most add and/or 

remove O(logn) nodes); the adversary can choose which nodes to crash and how 

nodes join. 

The adversary does wait until the system is recovered before it crashes again. The 

system is never fully repaired but always fully functional. In particular, the system 

is resilient against an adversary that continuously attacks the “weakest part” of the 

system. 

This model covers an adversary remaining or newly joining nodes towards the areas under 

attack. Which repeatedly takes down nodes by a distributed denial of service attack, 

however only a logarithmic number of nodes at each point in time. The algorithm relies on 

messages being delivered timely, in at most constant time between any pair of 

operational nodes, i.e., the synchronous model. Using the trivial synchronizer this is not a 

problem. We only need bounded message delays in order to have a notion of time which is 

needed for the adversarial model. The duration of a round is then proportional to the 

propagation delay of the slowest message. 



DHT Algorithm characteristics 

Conditions 

Set of hashing functions hi 

Hypercube  

Settings 

Each hypercube virtual node consisting of Θ log(n) nodes 

Nodes connected to all other nodes of their hypernode, and to nodes of 
their neighboring hypernodes 

Possible 

Churn can cause that some of nodes might need to change to another 
hypernode  s.t. all hypernodes own the same number of nodes at all times 

Hypercube dimension 

In case the number of nodes increases or decreases over a given pre-
established limit - the dimension of the hypercube increases or 
decreases by one respectively  

 



DHT Algorithm - remarks 
 

Logarithmic number of hypercube neighbors means that each node has  

θ(log2 n)  

Balancing of nodes among the hypernodes can be seen as a dynamic 

token distribution problem on the hypercube 

Goal 

Distribute the tokens along the edges of the graph 

• striving for equal distribution of tokens 

When tokens are moved around, an adversary constantly inserts and 

deletes tokens  



DHT Algorithm - remarks 
 

Two basic components of the storage system: 

● an algorithm which performs the dynamic token 

distribution 

● an information aggregation algorithm used to estimate 

the number of nodes in the system / to adapt the 

dimension of the hypercube accordingly 

 



DHT with Churn  

A fully scalable, efficient distributed storage system 

which tolerates O(log n) worst-case joins and/or crashes 

per constant time interval.  

As in other storage systems, nodes have O(log n) overlay 

neighbors, and the usual operations (e.g., search, insert) 

take time O(log n). 

  

 



Concluding remarks 

Storing data has evolved during the years in order to 
accommodate the raising needs of companies and 
individuals. We are now reaching a tipping point at which 
the traditional approach to storage – the use of a stand-
alone, specialized storage box – no longer works, for both 
technical and economical reasons.  

At present the best approach to satisfying current 
demands for storing data seems to be distributed 
storage. 
In our presentation we demonstrated different ways of 
approaching distributed storage. 


