
Advanced Topics in DS:

Distributed Storage

Presented by

Tiziano, Stephane, Carlos, Yaseen, Yuna, Emir

Recent years have witnessed an incredible amount of

user-generated content through applications such as

social networks, blogs and multimedia-sharing services.

The key challenge that research community as well as

Industry is facing is to design a cost efficient storage

system to cope with this data explosion.

A Distributed Storage System formed, by networking

together a large number of, inexpensive and unreliable,

storage devices provides one such alternative to store

such a massive amount of data with high reliability and

availability.

Introduction

What is Distributed Data Storage?
It’s a computer network in which information is stored in

more than one node, often in a replicated fashion.

How can we achieve this subject?
❏ Consistent Hashing

❏ Hypercubic Networks

❏ DHT(Distributed Hash Table) & Churn

Consistent Hashing

Consistent Hashing

•What is Consistent Hashing?
It’s a special kind of hashing such that when a hash table is

resized, only K/n keys need to be remapped on average,

where K is number of keys and n the number of slots

•How can we realize this hash table?
Starts off as a sparse ring data structure.

A SortedMap[K, V] where K is the offset in the ring and V

the value at that position.

Every node has N entries in the ring.

N is commonly referred as the node’s weight and correspond

to the probability of the node to be selected.

Every node has a probability P = W/S to be selected,

where W is its weight and S the Sum of all nodes’ entries.

Example

Let’s start with a simple hash ring of 2 nodes, each with a weight

equals to 2.

Every node is put in the Map applying a known set of hash functions

(h1, …, hk) to identify its point around the circle.

Example (cont.)

Now, to map a key to the corresponding node, we apply the same set

of hash functions used to map the nodes.

Every key-point is associated with the first clockwise node-point

found. (as shown in the picture)

Example (cont.)

•Now, adding 2 nodes with the same weight as previous, that’s what

happens.

•As we can see, only the «Robert» key has to be remapped.

•A similar situation takes place in case some node become unavailable

and all its entries have to be removed

In Summary

•Consistent hashing is based on mapping each object to a point on the edge of a

circle

•The system maps each available machine to many pseudo-randomly distributed

points on the edge of the same circle

•the system finds the location of that object's key; then walks around the circle

until falling into the first bucket

•If a bucket becomes unavailable then the points it maps to will be removed;

Requests now map to the next highest points

•The portion of the keys associated with each bucket can be altered by altering

the number of angles (weight of the node) that bucket maps to

Theorem 21.2 (Consistent Hashing).

In expectation, the Algorithm stores each object kn/m times.

Proof: While it is possible that some object does not hash closest to a node for

any of its hash functions, this is highly unlikely: For each node (n) and each hash

function (k), each object (m) has about the same probability (1/m) to be stored.

By linearity of expectation, a movie is stored kn/m times, in expectation.

Hypercubic Networks

Topology Properties

● Homogeneous
○ No dominant node

○ No single point of failure

● Non-anonymous
○ ID ∈ [0,1[

○ Hash functions

● Small node degree
○ Polylogarithmic in n: O(logk(n))

○ Deal with churn

● Small network diameter

○ Polylogarithmic in n

○ Easy routing

11

Fat Trees
● Trees:

○ Easy routing: single path between any pair of nodes

○ Bottleneck: non-homogeneous (e.g. the root)

● Fat-trees:
○ each edge (u,v) has a capacity proportional to the number of

leaves in the subtree rooted at v

12

Mesh
● Definition of the (m,d)-mesh:

○ m, d ∈ ℕ

○ Graph G = (V, E) with

13

● Examples:

Hypercubes

● Definition: a d-dimensional hypercube is a (2,d)-mesh

● Properties:

○ dimension d

○ 2d nodes

○ node degree d

○ network diameter d

○ routing: fix wrong bit, one at the time (multiple paths)

● Examples:

14

Torus
● Definition: a (m,d)-torus is an (m,d)-mesh with additional

wrap-around edges between nodes (for all i)

 and

● Examples:

15

NB: since m-1=1,

H(d) = M(2,d)

 = T(2,d)

Butterfly
● Definition: the d-dimensional butterfly BF(d) is a graph G=(V,

E1⋃E2) with

● Level i:

● Wrap-around butterfly:

● Property: constant node degree

● Examples:

16

Definition 21.9 Cube-Connected-Cycles

Remarks:
•Two possible representations of a CCC can be found in Figure 21.10.

•The shuffle-exchange is yet another way of transforming the hypercubic interconnection

structure into a constant degree network.

Definition 21.11 Shuffle-Exchange

Definition 21.13 DeBruijn

Remarks:

•Two examples of a DeBruijn graph can be found in Figure 21.14.

•There are some data structures which also qualify as hypercubic networks. An

example of a hypercubic network is the skip list, the balanced binary search tree

for the lazy programmer.

Skip List
● An ordinary ordered linked list of objects, augmented with

additional forward links.
● Ordinary linked list is level 0, and in addition, every object is

promoted to level 1 with probability 1/2.
● As for level 0, all level 1 objects are connected by a linked list.
● In general, every object on level i is promoted to the next level

with probability 1/2.
● A special start-object points to the smallest/first object on

each level.

Remarks:
● Search, insert, and delete can be implemented in O(log n) expected

time in a skip list.
● The randomization can easily be discarded, by deterministically

promoting a constant fraction of objects of level i to level i+1,for all i.
● There are obvious variants of the skip list, e.g., the skip graph,

balanced binary tree.
● More generally, how are degree and diameter of Definition 21.3

related? See in theorem

Theorem: Every graph of maximum degree d > 2 and size n must
have a diameter of at least ⌈(log n)/(log(d-1))⌉ -2.

Proof. Suppose we have a graph G = (V;E) of maximum degree d and
size n. Start from any node v ∈ V . In a first step at most d other
nodes can be reached. In two steps at most d (d-1) additional
nodes can be reached. Thus, in general, in at most k steps at most

nodes (including v) can be reached. This has to be at least n to
ensure that v can reach all other nodes in V within k steps. Hence,

Since logd-1((d-2)/d) > -2 for all d > 2, this is true only if k >=
⌈(log n)/(log(d-1))⌉-2.

Remarks
● In other words, constant-degree hypercubic networks feature an

asymptotically optimal diameter.
● Other hypercubic graphs manage to have a different trade-offs

between node degree and diameter.The pancake graph, for instance,
minimizes the maximum of these with d = k =𝜭(log n/log log n). The
ID of a node u in the pancake graph of dimension d is an arbitrary
permutation of the numbers 1,2, . . . ,d. Two nodes u, v are
connected by an edge if one can get the ID of node v by taking the
ID of node u, and reversing (flipping) the first i numbers of u's ID.
For example, in dimension d = 4, nodes u = 2314 and v = 1324 are
neighbors.

● There are a few other interesting graph classes which are not
hypercubic networks, but nevertheless seem to relate to the
properties of Definition 21.3.Small-world graphs.

● Expander graphs (an expander graph is a sparse graph which has
good connectivity properties, that is, from every not too large
subset of nodes you are connected to an even larger set of nodes)
are homogeneous, have a low degree and small diameter. However,
expanders are often not routable.

DHT & Churn

Definition - DHT (Distributed Hash Table)

 A distributed hash table (DHT) is a distributed data

structure that implements a distributed storage.

 A typical DHT consists of a search for a key,

 an insert (key, object) operation

 And sometimes, a delete (key) operation.

 Notable distributed networks that use DHTs include

BitTorrent’s distributed tracker.

the Internet domain name system (DNS) is essentially a

DHT.

Emphasized properties in DHT

•Autonomy and decentralization: the nodes collectively

form the system without any central coordination.

•Fault tolerance: the system should be reliable even with

nodes continuously joining, leaving and failing.

•Scalability: the system should function efficiently even

with thousands or millions of nodes.

 A key technique used to achieve these goals is that any

one node needs to coordinate with only a few other nodes

in the system – most commonly, O(log n) of the n

participants – so that only a limited amount of work needs

to be done for each change in membership.

Hypercubes and DHT

A DHT can be implemented as a hypercubic overlay network with

nodes having identifiers such that they span the ID space [0,1).

A hypercube can directly be used for a DHT. Just use a globally

known set of hash functions hi, mapping movies to bit strings

with d bits.

Other hypercubic structures may be a bit more intricate when

using it as a DHT: The butterfly network, for instance, may

directly use the d+1 layers for replication, i.e., all the d+1

nodes are responsible for the same ID.

Other hypercubic networks, e.g. the pancake graph, might need a

bit of twisting to find appropriate IDs.

Bootstrap Problem

We assume that a joining node knows a node which already

belongs to the system. This is known as the bootstrap

problem.

Typical solutions are: If a node has been connected with

the DHT previously, just try some of the previous nodes.

Or the node may ask some authority for a list of IP

addresses (and ports) of nodes that are regularly part of

the DHT.

Analyzation

When the sketched DHT is analyzed against an adversary that can crash a fraction of

random nodes:

We assume that joins and leaves occur in a worst-case manner. We think of an

adversary that can remove and add a bounded number of nodes (at most add and/or

remove O(logn) nodes); the adversary can choose which nodes to crash and how

nodes join.

The adversary does wait until the system is recovered before it crashes again. The

system is never fully repaired but always fully functional. In particular, the system

is resilient against an adversary that continuously attacks the “weakest part” of the

system.

This model covers an adversary remaining or newly joining nodes towards the areas under

attack. Which repeatedly takes down nodes by a distributed denial of service attack,

however only a logarithmic number of nodes at each point in time. The algorithm relies on

messages being delivered timely, in at most constant time between any pair of

operational nodes, i.e., the synchronous model. Using the trivial synchronizer this is not a

problem. We only need bounded message delays in order to have a notion of time which is

needed for the adversarial model. The duration of a round is then proportional to the

propagation delay of the slowest message.

DHT Algorithm characteristics

Conditions

Set of hashing functions hi

Hypercube

Settings

Each hypercube virtual node consisting of Θ log(n) nodes

Nodes connected to all other nodes of their hypernode, and to nodes of
their neighboring hypernodes

Possible

Churn can cause that some of nodes might need to change to another
hypernode s.t. all hypernodes own the same number of nodes at all times

Hypercube dimension

In case the number of nodes increases or decreases over a given pre-
established limit - the dimension of the hypercube increases or
decreases by one respectively

DHT Algorithm - remarks

Logarithmic number of hypercube neighbors means that each node has

θ(log2 n)

Balancing of nodes among the hypernodes can be seen as a dynamic

token distribution problem on the hypercube

Goal

Distribute the tokens along the edges of the graph

• striving for equal distribution of tokens

When tokens are moved around, an adversary constantly inserts and

deletes tokens

DHT Algorithm - remarks

Two basic components of the storage system:

● an algorithm which performs the dynamic token

distribution

● an information aggregation algorithm used to estimate

the number of nodes in the system / to adapt the

dimension of the hypercube accordingly

DHT with Churn

A fully scalable, efficient distributed storage system

which tolerates O(log n) worst-case joins and/or crashes

per constant time interval.

As in other storage systems, nodes have O(log n) overlay

neighbors, and the usual operations (e.g., search, insert)

take time O(log n).

Concluding remarks

Storing data has evolved during the years in order to
accommodate the raising needs of companies and
individuals. We are now reaching a tipping point at which
the traditional approach to storage – the use of a stand-
alone, specialized storage box – no longer works, for both
technical and economical reasons.

At present the best approach to satisfying current
demands for storing data seems to be distributed
storage.
In our presentation we demonstrated different ways of
approaching distributed storage.

